Walking The 606
During the field session, participants will walk the recently completed 606 – a 2.7-mile long multi-use path and linear park – and experience the city from a whole new vantage point. Members of the design team, client group, and community will discuss the transformation of this former industrial railroad corridor elevated sixteen feet above street level into a dynamic landscape and vital public amenity.

LEARNING OBJECTIVES

1. Understand design approach when working on marginal sites like an abandoned railroad corridor. What should be kept? What should change?

2. Learn about technical aspects including soils, drainage, and regulatory guidelines and how these informed the design approach.

3. Learn about collaborative process working with other disciplines, particularly structural engineers.

4. Understand the role of multiple agencies, partners, and community groups.
MATTHEW URBANSKI, ASLA
MICHAEL VAN VALKENBURGH ASSOCIATES, BROOKLYN, NY

Matthew is a Principal of MVVA, where he has worked for over two decades. Along with Michael Van Valkenburgh and Laura Solano, he has been part of the leadership team for almost every major project the firm has completed. He has planned and designed landscapes in the United States, Canada, and France, including waterfronts, plazas, parks, college campuses, courtyards, sculpture gardens, and private gardens. Collaborating with Michael Van Valkenburgh, he was a lead designer of Brooklyn Bridge Park in Brooklyn, NY; Segment 5 of Hudson River Park in New York, NY; Allegheny Riverfront Park in Pittsburgh, PA; Teardrop Park in New York, NY, and Maggie Daley Park in Chicago, IL. In addition to his work as a designer, Matthew lectures and publishes frequently, including articles in Topos and Ecological Restoration Journal. He is an Adjunct Associate Professor at Harvard’s Graduate School of Design and is co-owner of a specialty plants nursery in New Jersey. Matthew graduated from Albright College with a B.S. in biology, studied horticulture at the Delaware Valley College of Science and Agriculture, and earned an M.L.A. from Harvard’s Graduate School of Design. He is a licensed landscape architect in Massachusetts.

ANDREW GUTTERMAN, ASLA
MICHAEL VAN VALKENBURGH ASSOCIATES, CAMBRIDGE, MA

Andrew Gutterman, ASLA is an Associate Principal at MVVA with fifteen years of experience managing technically complex projects on challenging sites including the Alumnae Valley Landscape Renewal at Wellesley College, which was awarded the ASLA Design Award of Excellence in 2006. He earned a Bachelor of Science in ecology at the University of Connecticut and received a Master of Landscape Architecture from Harvard’s Graduate School of Design, where he was awarded the Charles Eliot Traveling Fellowship. Andrew has served as MVVA’s project manager for The 606 during all phases of the project.

JAMIE SIMONE, AICP, LEED-AP
THE TRUST FOR PUBLIC LAND, CHICAGO, IL

Jamie Simone is the Program Director for the Urban Parks Program of the Chicago office of The Trust for Public Land. With over 10 years of experience in the field of urban planning, she has a wide range of expertise in community outreach, urban design, research, and project management. Jamie holds a master’s degree in urban planning and policy from the University of Illinois at Chicago, and a bachelor’s degree from the University of Iowa.

JIM PETERS
SAIC / UIC, CHICAGO, IL

Jim began his career as a newspaper reporter at the Indianapolis Star and as an editor at Planning magazine, prior to working at the Indianapolis Historic Preservation Commission and the Commission on Chicago Landmarks, where he was a deputy city planning commissioner. Following that, he was the executive director of Landmarks Illinois, a statewide nonprofit advocacy group, and he currently teaches in the graduate programs at the University of Illinois at Chicago and the School of the Art Institute of Chicago. He has a master’s degree in preservation planning from the University of Illinois at Urbana-Champaign and a bachelor’s degree in environmental design from Texas A&M University. Last year he was elected a member of the College of Fellows of the American Institute of Certified Planners and he recently was named the interim ethics officer for the American Planning Association.

JAMES M. HAMELKA, P.E. S.E.
COLLINS ENGINEERS, INC., CHICAGO, IL

Jim is a structural engineer and the Regional Manager for CEI’s Chicago office where he has acted as Lead Structural Engineer and Project Manager for many significant engineering projects including The 606. Jim received his Bachelor of Science Degree in Civil Engineering at the University of Illinois at Chicago in 1998 and immediately began work as a civil/structural engineer with CEI. He continued to develop his structural engineering expertise, concentrating on transportation projects and focusing on bridge engineering, obtaining his Structural Engineering License in Illinois.
PROJECT OVERVIEW

THE 606
Stretching across four Chicago neighborhoods, the former Bloomingdale Line, an elevated railroad, has been transformed into a linear park and multi-purpose bicycle trail. Called “The 606” in reference to the first three digits of the city’s postal code, the park makes creative use of a defunct urban mega-structure as the framework for a new public realm.

Making the most of its origins as an interurban rail line, The 606 provides safe, grade-separated, uninterrupted travel lanes for commuting cyclists and recreational bikers. The pedestrian experience is also distinctive, with perimeter plantings and pedestrian-only pathways that lead to generous seating and viewing opportunities. New access parks along The 606 provide a vital complement to the elevated portions, creating space for programs and events that require a different configuration of space. Its powerful street presence, raised landscape, and commanding views are the foundation for a park unlike any other in the city. This combination of direct connection, leisurely enjoyment, and street level park connections contributes to a more vibrant public realm along Bloomingdale Avenue.

Along its 2.7 miles, The 606 connects a diverse range of experiences that reflect local context and communities. The park draws significant urban energy from its unconventional linear configuration and intersection with its immediate context including privately owned buildings, major vehicular arterials, an historic boulevard, bus and bicycle routes, and the CTA Blue Line. Various types of artwork are included along the trail, as are interpretive elements that relate the physical and social history of this impressive piece of civic infrastructure.

Initially as co-authors of the Framework Plan, and eventually as lead park designers on for The 606, MVVA worked closely with The Chicago Department of Transportation, the Chicago Park District, the Department of Housing and Economic Development, the Department of Cultural Affairs and Special Events, The Trust for Public Land, and the community to design, implement, and prepare for the management of The 606.

STATISTICS

- 2.7 Miles
- 38 Viaducts
- 1,500 Trees
- 4,000 Shrubs
- 175,000 Perennials, Grasses & Sedges
- 12,500 Vines
CREATING THE VISION

OPEN SPACE SHORTAGE
Discussions about the future of the Bloomingdale Line began as early as the 1990s, when The City of Chicago brought residents together to discuss an area of particular concern – Logan Square, a neighborhood that, at the time, had the least amount of open space per capita of any in Chicago. The City’s proposal to convert the Bloomingdale Line to a park was included in the 2004 Logan Square Open Space Plan, which prompted the Chicago Department of Transportation to begin applying for federal transportation funding for the project. The City’s proposal prompted neighbors to form Friends of the Bloomingdale Trail, who created a groundswell of community support along the entire length of the site and engaged the Trust for Public Land to help bring together a coalition of city and civic organizations to move the project forward.

PUBLIC CHARRETTE
The public design charrette on October 1-4, 2011, at the McCormick Tribune YMCA in Humboldt Park facilitated a comprehensive discussion of the vision for The 606. During these four days, over 200 people worked in small groups to examine topics that ranged from access and programming to landscaping and art, went on site tours, and attended open-house meetings. More than 500 community members attended one or more of the meetings, while thousands more kept track of progress, some submitting comments online. This remarkable level of input laid the groundwork for a deeper community involvement in The 606 that continues to this day.
SITE HISTORY

INDUSTRIAL RAIL CORRIDOR

Before the elevated structure that we know today was built, several miles of track ran down Bloomingdale Avenue at street level – part of the extensive train network that established Chicago as the Midwest’s industrial capital in the late 19th century. This created a hazard for pedestrians and people were routinely killed at rail crossings. In response, in 1910 the City required 140 miles of railway, including the 2.7 mile stretch along Bloomingdale Avenue, to be elevated above street level. The Bloomingdale Line was raised 16 feet above street level on a 30-foot wide right-of-way. The structure is comprised of poured-in-place mass concrete walls and a series of concrete or steel viaducts above the street grid, below. During its peak use, the Bloomingdale Line facilitated the distribution of products manufactured along its length including Schwinn bicycles and Hammond organs. At the neighborhood level, however, the line became a barrier, separating neighbors on opposite sides of the street.
PRECONSTRUCTION CONDITIONS
DESIGN APPROACH: LAYOUT + GRADING

THE LIFTED LANDSCAPE
Unlike other elevated rail structures built on bridge platforms, The 606 is supported by massive concrete retaining walls filled with lake sand, silt, and gravel. The design calls attention to this original construction by lowering the path and exposing the sides of the retaining walls. Manipulating topography also increases spatial and ecological variety, accentuates views, and facilitates access to the elevated landscape.

PATH DESIGN
The site’s grade separation from motor vehicles makes it inherently safe and convenient for cycling, walking, and running. A shared-use path – The Bloomingdale Trail – connects the length of the 2.7 mile long site. The central 10’ zone of the path is intended to be shared by bicyclists and pedestrians while the exterior 2’ zone on each side is dedicated to pedestrian use. The speed of bicycle traffic has been moderated through horizontal and vertical curvature and changes to the perceived path width. Additional pedestrian-only trails provide more options for exploration and relaxation along the elevated structure.
DESIGN APPROACH: PLANTING

CONTINUITY + DIVERSITY
Like a musical score, planting on The 606 contains a series of themes and variations intended to enrich the experience of a mostly linear event. To provide the greatest impact in a narrow corridor, a “hyper-nature”, or pronounced naturalism that is clearly constructed, has been created through strategic density and diversity of planting. Continuity is provided by a relatively consistent use of perennials, grasses and sedges as well as by the repetition of certain planting types including the Urban Savanna, Hanging Gardens, and Evergreen Spires. By contrast, distinctive planting events – the Poplar Thicket and Sumac Tunnel for example – work in concert with changes in topography, microclimate, and spatial enclosure to create variety along the length of The 606.

URBAN SAVANNA

1. *Baptisia australis*
2. *Liatris aspera*
3. *Schizachrium scoparium*
4. *Sporobolis heterolepis*
5. *Polystichum acrostichoides*
6. *Carex pensylvanica*

POPLAR THICKET

1. *Symphyotrichum cordifolium*
2. *Smilacina racemosa*
3. *Populus tremuloides*
4. *Anemone canadensis*
5. *Rhus glabra*
6. *Dennstaedtia punctilobula*
7. *Eurybia divaricata*
8. *Anemone canadensis*

EVERGREEN SPIRES

1. *Thuja plicata* ‘Spring Grove’
2. *Thuja occidentalis* ‘Hetz Wintergreen’

HANGING GARDENS

1. *Clematis paniculata*
2. *Parthenocissus quinquefolia*
3. *Campsis radicans*
4. *Parthenocissus tricuspidata*
5. *Aristolochia macrophylla*

SUMAC TUNNEL

1. *Carex flaccosperma*
2. *Carex pensylvanica*
3. *Carex eburnea*
4. *Carex flaccosperma*
DESIGN APPROACH: STRUCTURE

REPURPOSE + RESHAPE

The concept of honoring and enhancing the site’s unique physical attributes guided the design team’s approach to handling the technical challenges of transforming a 100-year old piece of industrial infrastructure designed to keep people out into a safe and accessible public amenity. Rather than attempt to make the entire structure appear new, the team embraced its industrial ruin-like quality and chose to re-use existing elements wherever possible. This approach also proved to be a frugal one, without which the infrastructure costs – for rehabilitating thirty-eight viaducts, repairing miles of embankment walls, constructing two new viaduct structures, thirteen new access points conforming to ADA guidelines, and following strict stormwater management guidelines – would have overwhelmed the project budget.